67 research outputs found

    Biomimetic Approaches to "Transparent" Photovoltaics: Current and Future Applications

    Get PDF
    There has been a surge in the interest for (semi)transparent photovoltaics (sTPVs) in recent years, since the more traditional, opaque, devices are not ideally suited for a variety of innovative applications spanning from smart and self-powered windows for buildings to those for vehicle integration. Additional requirements for these photovoltaic applications are a high conversion efficiency (despite the necessary compromise to achieve a degree of transparency) and an aesthetically pleasing design. One potential realm to explore in the attempt to meet such challenges is the biological world, where evolution has led to highly efficient and fascinating light-management structures. In this mini-review, we explore some of the biomimetic approaches that can be used to improve both transparent and semi-transparent photovoltaic cells, such as moth-eye inspired structures for improved performance and stability or tunable, coloured, and semi-transparent devices inspired by beetles' cuticles. Lastly, we briefly discuss possible future developments for bio-inspired and potentially bio-compatible sTPVs

    Diarylethenes in Optically Switchable Organic Light‐Emitting Diodes: Direct Investigation of the Reversible Charge Carrier Trapping Process

    Get PDF
    The design, fabrication, and characterization of optically switchable organic light-emitting diodes (OSOLEDs) based on the combination of the commercially available light-emitting polymer poly(9,9′-dioctylfluorene-alt-benzothiadiazole), F8BT, doped with a diarylethene derivative is reported. The photochromic activity of the dopant in the solid state has been investigated both via UV/vis absorption and photoluminescence spectroscopy, whereas the morphology of different blends is investigated via atomic force microscopy. OSOLEDs embedding dopant loadings of 1, 5, and 10 wt% exhibit optical responsivity with a maximum reversible optical threshold voltage shift of 4 V. The best performing devices containing 5 wt% dopant show a maximum current density and luminance ON/OFF ratio of ≈20 and ≈90, respectively. For the first time, the impact of the diarylethene isomerization on hole and electron transport has been decoupled and directly investigated, via the design, fabrication, and characterization of single-carrier switchable devices based on the same blends. Not only do these results confirm the photo-responsive trapping activity of the diarylethenes on both charge carriers, but they also demonstrate its asymmetry, with a predominant effect on electron transport that is over 3.4 times larger as compared to hole transport

    Experimental Demonstration of Staggered CAP Modulation for Low Bandwidth Red-Emitting Polymer-LED based Visible Light Communications

    Get PDF
    In this paper we experimentally demonstrate, for the first time, staggered carrier-less amplitude and phase (sCAP) modulation for visible light communication systems based on polymer light-emitting diodes emitting at ~639 nm. The key advantage offered by sCAP in comparison to conventional multiband CAP is its full use of the available spectrum. In this work, we compare sCAP, which utilises four orthogonal filters to generate the signal, with a conventional 4-band multi-CAP system and on-off keying (OOK). We transmit each modulation format with equal energy and present a record un-coded transmission speed of ~6 Mb/s. This represents gains of 25% and 65% over the achievable rate using 4-CAP and OOK, respectively.Comment: 6 pages, 9 figures, IEEE ICC 2019 conferenc

    Optoelectronic Modelling, Circuit Design and Modulation for Polymer-Light Emitting Diodes for Visible Light Communication Systems

    Get PDF
    This paper investigates the use of organic polymer light emitting diodes (PLEDs) for the use in visible light communications (VLC). We prepared blue and green emitting PLEDs using commercial light-emitting polymers, and then characterised the device emission (spectrum and power), and extracted their circuit parameters for their electrical equivalent model for driving with small signals. In addition, we characterised the bandwidth ( Bmod ) of the devices over a period of continuous driving (∼ 4 h) and found that for the blue PLEDs the Bmod decreased from an initial 750 kHz to a steady state of ∼250 kHz. The green-emitting devices were found to benefit from an extended Bmod of ∼1.5 MHz at the beginning of the test, which then stabilised to ∼850 kHz. Furthermore, with the addition of a first order RC filter we show that, the steady state Bmod of the blue PLED cane be increased by a factor of ∼3, thus allowing > 1 Mbps non-return to zero on-off keying (NRZ OOK) data transmission in a complete VLC system

    Efficient light confinement with nanostructured optical microfiber tips

    No full text
    Nanostructured optical microfiber tips are proposed and experimentally demonstrated to efficiently confine light beyond the diffraction limit at high powers. Focused ion beam milling was used for the nanostructuring of gold-coated optical microfiber tips with both single-ramp and wedge geometries. Small apertures were formed by flat cutting or hole drilling and optical spot sizes of ~λ/10 with high transmission efficiency were achieved. Numerical simulations were carried out to optimize the device design with circularly polarized light. Enhanced transmission efficiencies (higher than 10-2) were recorded by optimizing the overall light throughput along the fiber tips. The tip thermal behavior was investigated by launching high powers into the device and recording the tip position in a scanning near-field optical microscopy set-up. This nanostructured optical microfiber tip has the potential for applications in optical recording, scanning near-field optical microscopy and lithography

    A porphyrin pentamer as a bright emitter for NIR OLEDs

    Full text link
    The luminescence and electroluminescence of an ethyne-linked zinc(ii) porphyrin pentamer have been investigated, by testing blends in two different conjugated polymer matrices, at a range of concentrations. The best results were obtained for blends with the conjugated polymer PIDT-2TPD, at a porphyrin loading of 1 wt%. This host matrix was selected because the excellent overlap between its emission spectrum and the low-energy region of the absorption spectrum of the porphyrin oligomer leads to efficient energy transfer. Thin films of this blend exhibit intense fluorescence in the near-infrared (NIR), with a peak emission wavelength of 886 nm and a photoluminescent quantum yield (PLQY) of 27% in the solid state. Light-emitting diodes (LEDs) fabricated with this blend as the emissive layer achieve average external quantum efficiencies (EQE) of 2.0% with peak emission at 830 nm and a turn-on voltage of 1.6 V. This performance is remarkable for a singlet NIR-emitter; 93% of the photons are emitted in the NIR (λ > 700 nm), indicating that conjugated porphyrin oligomers are promising emitters for non-toxic NIR OLEDs

    C-Si hybrid photonic structures by full infiltration of conjugated polymers into porous silicon rugate filters

    Get PDF
    Loading of one-dimensional (1-D) porous silicon photonic crystals (PS-PhCs), known as rugate filters, with luminescent materials is generally limited by the potential for (undesired) "pore clogging," in relation to the size of the nanoparticles (e.g. quantum dots) or molecular species, and so far mainly restricted to small molecular weight materials or small nanocrystals, or in situ polymerized dyes. Here we report the infiltration 1-D PS-PhCs with a green-emitting commercial luminescent polymer (F8BT, poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[ 2,1,3]thiadiazol-4,8-diyl)]), with a molecular weight of approximately 46 kDa across their whole depth (approximately 7.5 mu m), thereby showing that pore clogging is not a concern for these structures. We also characterize the modification of the photoluminescence (PL) and decay rates, and investigate the detailed inner morphology of the filters with the help of (scanning) transmission electron microscopy. We observe both suppression (in the stop-band) and enhancement (at the high-energy band-edge) of the PL. We also find that the photonic stop-band is red-shifted after polymer infiltration, due to the increased effective refractive index of the polymer-infiltrated nanostructured system. The presence of just one unbroadened peak in the reflectance spectra after infiltration confirms that infiltration extends for the whole depth of the rugate filters

    A porphyrin pentamer as a bright emitter for NIR OLEDs

    Get PDF
    The Luminescence and electroluminescence of an ethyne-Linked zinc(II) porphyrin pentamer have been investigated, by testing blends in two different conjugated polymer matrices, at a range of concentrations. The best results were obtained for blends with the conjugated polymer PIDT-2TPD, at a porphyrin loading of 1 wt%. This host matrix was selected because the excellent overlap between its emission spectrum and the low-energy region of the absorption spectrum of the porphyrin oligomer leads to efficient energy transfer. Thin films of this blend exhibit intense fluorescence in the near-infrared (NIR), with a peak emission wavelength of 886 nm and a photoluminescent quantum yield (PLQY) of 27% in the solid state. Light-emitting diodes (LEDs) fabricated with this blend as the emissive layer achieve average external quantum efficiencies (EQE) of 2.0% with peak emission at 830 nm and a turn-on voltage of 1.6 V. This performance is remarkable for a singlet NIR-emitter; 93% of the photons are emitted in the NIR (lambda > 700 nm), indicating that conjugated porphyrin oligomers are promising emitters for non-toxic NIR OLEDs

    A film-forming graphene/diketopyrrolopyrrole covalent hybrid with far-red optical features: Evidence of photo-stability

    Get PDF
    A dianiline derivative of a symmetric donor-acceptor-donor diketopyrrolopyrrole-based dye is employed for the two-sided covalent functionalization of liquid exfoliated few layers graphene flakes, through a direct arylation reaction. The resulting nanohybrid features the properties of a polymeric species, being solution-processed into homogeneous thin films, featuring a pronounced red-shift of the main absorption band with respect to the model dye unit and energy levels comparable to those of common diketopyrrolopyrrole-based polymers. A good electrical conductivity and the absence of radical signals generated after intense white light illumination, as probed through electron paramagnetic resonance, suggest a possible future application of this composite material in the field of photoprotective, antistatic layers with tunable colors
    corecore